Watershed Modeling with Soil Water Assessment Tool

Instructor: Latif Kalin, Professor College of Forestry, Wildlife and Environment E-mail: kalinla@auburn.edu https://latifkalin.weebly.com

Course Description:

This course is intended to teach students modeling fundamentals to solve environmental change problems at watershed scale driven by (i) climate variability/change and (ii) land use/cover change. Problems will be tackled using the Soil Water Assessment Tool (SWAT) to predict streamflow and water quality and develop abatement strategies. Students taking the course must have a good understanding of hydrologic processes and should know ArcGIS well. We are going to cover advanced topics such as *sensitivity* and *uncertainty analysis* techniques, which are extremely important skills for modelers.

Course Objectives:

Students will

- (i) Develop understanding of the hydrological and biogeochemical processes at watershed scale
- (ii) Learn the importance of solving problems at watershed scale and delineate watersheds.
- (iii) Learn how hydrologic and biogeochemical processes are impacted by changing land use/cover and climatic conditions
- (iv) Develop skills to do sensitivity and uncertainty analysis
- (v) Learn developing a SWAT project to solve an important environmental problem.

Course Content:

Day 1	Introduction to Watersheds
-	• Introduction to SWAT: Theory
	• ArcGIS interface (GIS)
	Download and Install ArcSWAT
	Folders and Files Structure
Day 2	Getting Started - Set up the initial project, open/copy/delete SWAT projects
l	Watershed delineation
	Landuse and soil overlay
	HRU delineation
	• Weather and remaining inputs to develop the SWAT model (including point sources)
Day 3	Input modifications: Point Sources, inlet discharges, reservoirs
	• Edit Parameters:
	Subwatershed level: Soil, Weather Input, Subbasin, HRU, Channel, Groundwater, Water
	Use, Management, Chemical Input, Pond/wetland, Stream Water Quality Input, Septic Input
	Watershed Level: General parameters, Watershed water quality, land use updating
	Running SWAT
	SWAT Output Files
	Review of summary outputs
	Setting default simulations, calibration simulations, etc.
Day 4	 Introduction of calibration and validation techniques (theory)
	Review of model calibration through the model interface
	Manual Calibration
	Manual Sensitivity Analysis
Day 5	Full Project

All the steps above will be simultaneously practiced with a sample dataset

Course duration/daily hours: 5 days (Monday to Friday); 3 hours per day (14:00 - 17:00).

Provisional date (1 week): September 16-20, 2024

Time	AM (9:00 – 12:00)	PM (14:00 – 17:00)
Day 1 (Monday)	R	С
Day 2 (Tuesday)	IT	IT
Day 3 (Wednesday)	R	С
Day 4 (Thursday)	R	С
Day 5 (Friday)	R	С

C-Class; R-Research; IT-Invited talk.